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Abstract. An effective central model of action selection for solving a foraging 
task has been presented in past papers. The main task is decomposed in behav-
ioral modules that use multiple sensor information fused together in the form of 
a unified world perception. In turn, the urgency to-be-executed of each behavior 
is calculated from its internal status and the unified perception of the world. In 
this model, the behavior with the highest salience is allowed to be expressed 
through motor commands. However, for selection to occur we assume that be-
havioral modules have already been learnt; as a consequence it is necessary to 
have designed these modules at an earlier stage. In this paper, we propose the 
use of genetic algorithms to nearly optimize behaviors related to travel the 
arena where the robot is to be set. Furthermore, we propose that by sharing the 
same topology as the evolved behaviors, backpropagation can be used to train 
the locating cylinders behavior. 

1    Introduction

The Action Selection problem is a recurrent topic in robotics. This problem finds its 
roots in ethology where it is termed the “behavior switching” or the “decision mak-
ing” problem. A developing interest in action selection has grown in researchers look-
ing for modeling animal behavior in robots. Therefore, either a set of tasks or a single 
task has been chosen for building and programming these animal-robots (animats). 
Mostly, these tasks are concerned with the foraging behavior and social behaviors 
such as flocking and prey-catching among others [1]. Once the main task is set for the 
robot to be solved, a mechanism for selection is needed. Thus, a variety of action se-
lection mechanisms can be used, these models range from arrow-box diagrams, and 
Gedanke experiments [2], to complex equations for replicating animal behavior.  

Whatever method is chosen, the main task has to be decomposed in algorithmic 
versions of behaviors that fused together solve the desired task. Next, the action selec-
tion mechanism, and the algorithmic behaviors have to be implemented using any 
available robotic platform. Thus, the design of the robot task using the animat ap-
proach meets specific needs that the roboticist has to fulfill if the task is to be re-
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solved. Frequently, roboticists focus more on designing either the action selection 
mechanism or the behaviors that compose the main task. In this paper, we are trying 
to focus on both the design of the action selection mechanism and the selected behav-
iors. Thus, we intend to use an evolutionary approach to fine tuning some of the be-
haviors that the action selection mechanism has to switch. Besides, we also plan to 
use backpropagation to train another behavior. Finally, a model of Central Action Se-
lection with Sensor Fusion (CASSF) is used to switch between these behaviors.  

The development of the experiments below described requires some necessary 
background on Genetic Algorithms, which is explained in section 2. Later on, in sec-
tion 3 we explain how we design the behaviors: cylinder-seek, cylinder-pickup, wall-
seek, wall-follow and wall-deposit. Then, these behaviors will be used in conjunction 
to solve the foraging task set for the Khepera robot. The selection of the behaviors is 
made using the CASSF model, which is explained in Section 4. Next, section 5 pre-
sents the results of integrating the evolved behaviors, and the neural-net trained be-
havior with some algorithmic behaviors. Finally, in section 6 we provide a general 
discussion highlighting the importance of these experiments.  

2    Evolving Robot Behavior

Several evolutionary methods have been considered by the robotics community for 
producing either the controllers or the behaviors required for robots to perform their 
assigned tasks, and survive in their environments. All of them may be taken as varia-
tions of a general process whereby each generation of individuals from a population is 
evaluated, and these individuals procreate according to their fitness. Later on, the 
population undergoes mutation processes and a new population is somehow selected 
from the old one to continue with the process. These methods include Genetic Algo-
rithms (GAs), Evolutionary Strategies, Genetic and Evolutionary Programming and 
Co-Evolution, although in this work we have used GAs [3].  

The use of evolutionary techniques for the development of robot control systems 
commonly relies on the use of neural networks [4]. Therefore, a population of robot 
controllers is encoded into genotypic representations; then the selection, crossover, 
and mutation operators are applied to the population in order to produce a new off-
spring. The decoding of every genotype into individual phenotypes (neural control-
lers) allows the evaluation of the new offspring by having each individual to live for a 
limited period of time. This process is repeated until a satisfactory evaluation level is 
obtained (Figure 1).  

In order to find a solution within a search space the genetic operators are applied to 
move across a convoluted landscape (Figure 2). This landscape is the result of meas-
uring the fitness of all the individuals of the population. In the evolutionary robotics 
methodology measuring the fitness corresponds to how well the robot performs when 
evolving a particular behavioral module. Next, the robot is allowed to operate in the 
environment for an adequate number of steps or lifetime. The fitness calculation im-
plies robot time-consumption; therefore, in the majority of the cases the use of a robot 
simulator is preferred. In order to minimize the “reality gap” between the simulator 
and the actuators, the simulator has to introduce different noise-levels in the sensors 
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and the actuators. As a result an optimal final transference of the controllers from the 
simulator to the real robots can be obtained [4,5].  

Usually the specialized representation of the robot controller to-be-tested is coded 
into a chromosome, where each locus (or position) takes a finite possible value (al-
lele). This representation corresponds to the genotype from where the phenotype is 
derived. Often the genotype directly codes into the phenotype; however, sometimes 
an elaborated translation is needed. Initially, a population of random controllers is 
spawned, their fitness evaluated, and then the GAs’ operators are applied. The selec-
tion operator chooses to breed, based on the individual fitness, the best individuals in 
the next offspring by means of operators such as the crossover and the mutation. The 
selection is made in a probabilistic way; thus, the use of the weighted roulette-wheel 
is a common method of selection. In this method, each slot of the roulette corresponds 
to an individual in the population, and the size of this slot is proportional to its fitness.  

Another way of selecting individuals is the tournament selection where new indi-
viduals are generated from the result of local competitions. In the competitions the fit-
test individuals who beat the less fitted; the former are inserted back in the new prog-
eny whether using or not the crossover operator. The preservation of the best 
individuals, from a previous generation, into the next offspring is called elitism. Se-
lection in this way is used to guarantee that the best solution found so far is not lost. 
The crossover is a probabilistic operator, which takes two individual encodings and 
swaps their contents around a random point along the chromosome (one point cross-
over). Mutation occurs with a probabilistic flip of the bits in the chromosome encod-
ing of the individuals of the new offspring (in general, with a random change of the 
alleles of the genes). Often, mutating the individual contents of a new offspring 
causes inferior individuals; though, better individuals will occasionally emerge. 

  

Fig. 1. The new offspring is generated from the geno-
type of previous robot controllers (adapted from [6]) 

Fig. 2. A fitness landscape generated 
using a DF1 test problem generator [7] 

3    The Design of the Behaviors 

In the last decade the use of a commercial robotic platform and the use of a robot 
simulator have been a popular choice for researchers trying to model robot behavior. 
One example is the Khepera robot [8], which has been commonly used in evolution-
ary robotics. The Khepera is a small robot, which has a diameter-long of about 70 
mm; the two DC motors control the displacement of the robot on its wheels. This ro-
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bot has been equipped with a ring of eight infrared sensors all around the body of the 
Khepera. Despite many simulators of the Khepera been freeware over the Internet, the 
use of a commercial simulator has several advantages over freeware software.  

  

Fig. 3. The wall-seek and wall-follow behav-
iors were evolved using the Webots  

Simulator 

Fig. 4. The behaviors wall-seek, wall-follow 
and cylinder-seek share the same Neural 

Network topology 

One of the main advantages of using commercial software for robot control and 
simulation is a complete support of turret attachments. Webots is a 3D robot simulator 
[9] that widely supports the Khepera robot amongst other platforms. In this work we 
employed the Webots simulator for developing the follow walls and avoid obstacles 
behavioral modules (Figure 3). The controller for these behaviors is a fully connected 
feedforward multilayer-perceptron neural network with no recurrent connections (Fig-
ure 4). The topology for the neural network is as follows: 6 neurons in the input layer, 
5 neurons in the hidden layer, and 2 in the output layer. The sigmoid transfer function 
is used at the hidden and the output neurons. The infrared output from the Khepera (0 
to 1023) is made binary by using a collision threshold thc = 750. This binary input is 
fed into the neural network; in turn, the binary output of the neural network is scaled 
to ± 20 values for the DC motors.  

The genetic algorithm nearly optimizes the weights of the neural network, and the 
use of a direct encoding sets the genotype as a vector c of 40 elements. Having a sin-
gle vector representing every individual of the population, the size of the population is 
equivalent to all the number of neural networks (to be evaluated) in one generation. 
Random values are generated for the weights wi, -1 < wi < 1, of the n=100 neural con-
trollers of the initial population G0. Elitism is used to facilitate the copy of the two 
best individuals into the next offspring. Four random parents are chosen for (n/2)-1 
local competitions for the tournament selection. The two winners of one local tour-
nament are breed using a random crossover point with a probability of 0.5. On the 
other hand, the new offspring is affected with a mutation probability of 0.01. Indi-
viduals are allowed to run for about 22 seconds in the Webots simulator. In order to 
let the individuals to start from different locations, and orientations, a supervisor node 
was set in Webots. Communication of the supervisor with the neural controller, over 
TCP/IP, facilitated the motion of the Khepera in the fast-speed mode. The world used 
for running the evolution of both controllers is shown in Figure 3. A world such as 
this favors avoiding obstacles while traveling close to walls.  

For the avoiding obstacles behavior (wall-seek), the employed fitness formula 
(adapted from [10]) for each individual was  
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where ls is the linear speed in both wheels, ds is the differential speed on both wheels 
(a measurement of the angular speed), and max_ir is the highest infrared sensor value. 
The use of a formula fitness like this rewards those fastest individuals who travel on a 
straight line while avoiding obstacles. The plot of the fitness and the average fitness 
for this behavior, over 11 generations, is shown in Figure 5. Next, the fitness formula 
employed for the behavior wall-follow (adapted from [11]) was as follows 

2)(*12 tghcfcf =  (2) 

In this formula the tendency to remain close to walls (tgh), or thigmotaxis, is calcu-
lated as the fraction of the total time an individual is close to a wall. Therefore, a fit-
ness formula such as this selects the individuals that travel near the wall with an 
avoidance behavior. Figure 6 shows the plot of fitness and the average fitness for the 
wall-follow behavior over 18 generations.  

  

Fig. 5. The evolution of the wall-seek behav-
ior is reached after 11 generations  

Fig. 6. An appropriate wall-follow behavior is 
obtained after 18 generations 

The development of the cylinder-seek behavior employed a similar architecture for 
the neural network than the previous evolved behaviors. However, a set of fifteen pat-
terns was used to train the neural network with backpropagation. These patterns cor-
respond to the main situations the robot finds when the behavior has to be activated. 
Instead of using a test set of patterns, the trained network was tested on the simulator 
to assert an adequate generalization. Basically, on this behavior the Khepera, when 
running around the squared arena, avoids obstacles until is driven close to a cylinder, 
and then the robot is stopped. Generalization is obtained after 1,184 generations when 
the total-error drops below 0.02 (Figure 7).  

Finally, the cylinder-pickup and the wall-deposit behaviors were programmed as 
algorithmic routines with a fixed number of iterations for clearing the space for lower-
ing the arm, opening the claw, and moving upwards the arm. These two actions al-
ways have to be carried out in the same sequence, but in a reversed order, to either 
grip an object or to release the same object. Due to the sequential nature of these be-
haviors we preferred the use of algorithmic versions of them, rather than trying to 
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shape those behaviors using supervised learning. Once all the mentioned behaviors 
were appropriately designed, and evolved, they were implemented on the real 
Khepera (Figure 8). Due to the simulator properties of introducing noise in the simu-
lated sensors and actuators, and the topology of the neural network acting as a tolerant 
classifier to noisy inputs; the transference of the evolved behaviors from the simulator 
to the real robot was made in a straightforward manner. On the other hand, the algo-
rithmic routines for handling the gripper required none modification. 

  

Fig. 7. The Neural Network adequately clas-
sifies the 15 training patterns after 1,184 it-

erations with a total-error below 0.02 

Fig. 8. The Khepera robot set in the middle 
of a squared arena with simulated  

food (wooden-cylinders)  

4    The CASSF Action Selection Mechanism

A centralized model of Action Selection with sensor fusion (CASSF) has already 
been used for allowing a winning competing behavior to be expressed at the time [1, 
12, 13]. A main control loop updates at every step of the simulation sensor readings 
and motor commands. The different sensors readings from the Khepera, the infrared, 
the odometry, and the optical barrier in the gripper; all they form the raw sensory in-
formation that is to be fed into the model. Next, the raw sensory information takes the 
form of single perceptual variables that can be used to build a unified perception of 
the world. Therefore, the use of sensor fusion facilitates the integration of multiple 
non-homogenous sensors into a single perception of the environment.  

The perceptual variables are used to calculate the urgency (salience) of a behavior 
to be executed. However, not all the variables are equally relevant for a particular be-
havior. For instance, the searching of a place for releasing a cylinder requires the 
presence of an object in the gripper. Additionally, behaviors contribute to the calcula-
tion of the salience with a busy-status signal indicating a critical stage where interrup-
tion should not occur. Therefore, the salience of a behavioral module is calculated by 
weighting the relevance of the information from the environment (in the form of per-
ceptual variables), and its busy status. In turn, the behavior with the highest salience 
wins the competition and can be expressed as motor commands that are directly sent 
to the motor wheels and gripper. Next, we explain how the salience is computed. 
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The salience is calculated by adding the multiplication of the perceptual variables, 
by the relevant behavioral weights, to the multiplication of the weighted busy-status. 
For the foraging behavior, the perceptual variables wall_detector(ew), grip-
per_sensor(eg), cylinder_detector(ec), and corner_detector(er); they form the context 
vector, which is constructed as follows (e =[ew, eg, ec, er], ew, eg, ec, er ∈{1,0}). Five 
different behaviors return a current busy-status (ci) indicating that ongoing activities 
should not be interrupted. Next, the current busy-status vector is formed as described 
next,   c =[ cs, cp, cw, cf, cd ], cs , cp , cw , cf, cd ∈{1,0}, for cylinder-seek, cylinder-
pickup, wall-seek, wall-follow, and wall-deposit respectively. The salience (s) or ur-
gency is calculated by adding the weighted busy-status (wb) to the weighted context 
vector (e). Then with wb = 0.7 we have: 

]15.0,0.0,15.0,15.0[depositwall

],0.0,0.0,15.0,15.0[followwall

],0.0,0.0,15.0,15.0[seekwall

],0.0,15.0,15.0,0.0[pickupcylinder

],0.0,15.015.0,0.0[seekcylinder
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(3) 

Behaviors are chosen accordingly to the task that is to be resolved. For instance, 
the simulated foraging task resembles the food-retrieval of a wall-following rat when 
afraid to facing a novel environment. The robot basal ganglia proposal of Prescott et 
al. [14] address more neurophysiological issues related to this work. Whereas for 
cleaning an arena full of cans, and depositing them close to walls, is solved using a 
complete evolutionary approach in Nolfi [15]. For our experiments we have decom-
posed the foraging task in algorithmic behaviors that can be assembled together to 
show this behavior. Finally, we assume that behaviors were previously learnt, and 
they can be considered as selected chunks of memory.  

The centralized model can be thought as a particular instance of a neural network 
(Figure 9), and evolutionary learning could be used to set its weights instead of the 
delta rule. The single-layer feed-forward network (perceptron) has a distribution input 
layer with four neurons, and the piecewise-linear transfer function at the output layer 
of five neurons. Using sensor fusion the Khepera raw sensory information is fed, into 
the neural network, in the form of perceptual variables. Winner-takes-all is imple-
mented at the output of the neural network by letting the highest output to win the 
competition. In order to contribute on the calculation of the salience, a winning be-
havior sends a busy signal to the computing output layer of the neural network. A be-
havior is deselected when its salience is below the strongest salience. 

5    Experiments and Results 

The foraging task was set in a squared-box for running the experiments. A standard 
RS232 interface was used to connect the robot to the computer host. The simulated 
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‘food’ was made of four wrapped foil-paper wooden-cylinders, which were set in the 
middle of the arena. Foil paper was used to facilitate the use of the resistivity sensor 
in the claw of the gripper. The definition of the behaviors, as described earlier, is as 
follows: cylinder-seek is used to travel the arena searching for food while avoiding 
obstacles, cylinder-pickup clears the space for grasping the cylinder, wall-seek is em-
ployed to locate the nearest wall and avoiding obstacles, follow-wall travels next to a 
proximate wall, and cylinder-deposit lowers and opens an occupied gripper. 

 

Fig. 9. Perceptual variables (ei) form the input for the Salience Neural Network. The output se-
lection of the highest salience (si) is gated to the motors of the Khepera. Notice the busy-status 
signal (c1) from behavior B1 to the output neuron 

 Commonly, the foraging task is formed by four grasping-depositing bouts of 
foiled cylinders; thus, one typical grip of a cylinder is shown in Figure 10. Addition-
ally, the next ethogram (Figure 11), and some related statistics (Table 1) resume this 
behavior. The time resolution of the ethogram is reported in seconds, and seconds and 
milliseconds for the statistics analysis. Neither of the behaviors was selected before 
cylinder-seek. However, it took only 0.01 seconds for cylinder-seek to be selected. 
Next, cylinder-pickup was selected at 3.25 seconds of the total elapsed time (42.64 
seconds). Wall-seek was selected at 4.71 seconds, followed by wall-follow at 6.87 
seconds, wall-deposit was selected the last after approximately 7 seconds of having 
initiated the search of a can. The remaining three bouts were repeated in a similar 
fashion with different search periods. The behavior selected the most was can-seek 
with 5 times, all the rest with 4 times. 

6    Conclusion 

In this paper we have shown that non-homogenous behaviors such as wall-seek and 
wall-follow were the result of using genetic algorithms, and cylinder-seek was ob-
tained using backpropagation. The three behaviors share the same neural network to-
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pology, but with different weights, for having the neural network to behave in a dif-
ferent manner. The use of the same circuit with different weights may evidence flexi-
bility in the use of shared circuits for motor control (plasticity). The central model of 
action selection coupled well with the design of the behaviors, which were developed 
using Neural Networks, GAs, and backpropagation, together with algorithmic rou-
tines designed by hand.  

The calculation of the salience in CASSF drives the selection of non-homogenous 
behaviors for the resolution of a foraging task. Additionally, the use of a busy-status 
signal accounts for boosting the salience when the behavior has to be maintained, and 
the disconnection of the same signal favors the interruption of any of the behaviors 
during the simulation. The occurrence of regular bouts of grasping-depositing cans of-
fers a proof of the correct integration of the non-homogenous behaviors with the 
model of central selection. Furthermore, due to its detached-from-the-behaviors de-
sign, we consider CASSF a robust model of action selection. Besides, adaptability and 
extensibility is offered, at relatively low cost, by allowing independent modification 
of both the selection module and the behaviors. 

  

Fig. 10. A regular food-collection 
bout, the cross indicates the initiation 

of the behavior 

Fig. 11. Ethogram for a typical run of the foraging 
task 

Table 1. Elementary statistics for a representative run of the Khepera with CASSF 

Behavioral Elements Freq Latency TotDur TotDur% Mean StdDev StdErr MinDur MaxDur
1. cylinder-seek 5.00 0.01 16.74 39.27 3.35 1.86 0.83 1.54 5.99
2. cylinder-pickup 4.00 3.25 4.59 10.75 1.15 0.20 0.10 1.04 1.45
3. wall-seek 4.00 4.71 6.24 14.63 1.56 1.03 0.52 0.50 2.68
4. wall-follow 4.00 6.87 12.58 29.50 3.14 3.17 1.59 0.14 7.37
5. wall-deposit 4.00 7.01 2.48 5.82 0.62 0.01 0.01 0.61 0.64
6. none 1.00 0.00 0.01 0.02 0.01 0.00 0.00 0.01 0.01
Total 22.00 0.00 42.64 100.00 1.94 1.91 0.41 0.01 7.37  

 
Once the behaviors are evolved or learnt, the next step is the evolution of the ma-

trix we. Moreover, the co-evolution of this matrix, which defines the global control 
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architecture, with the evolved behaviors can simultaneously be made. Finally, as a 
further step we aim to automatically obtain, by means of computer evolution, the most 
adequate definitions of the perceptual variables with the later objective of having a 
reduction in the number of decisions made by the human designer. 
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